В МАИ разработали уникальное решение по умной дефектоскопии

Московский авиационный институт, 29 октября 2024 года

В рамках проекта по промышленной дефектоскопии учёные МАИ разработали уникальную методику по созданию синтетических данных. Обученная на этих данных нейросеть позволяет снимать показания промышленных приборов при помощи умной камеры беспилотника.

Одной из важнейших задач на промышленных объектах является поддержание исправности оборудования и инфраструктуры. Обычно её выполняют квалифицированные специалисты, но обход огромных территорий занимает много времени, а в некоторых местах — и небезопасен для человека. Для выполнения этой работы в последние годы стали активно использовать беспилотники, оснащённые умными камерами, которые позволяют в автоматическом режиме контролировать объекты инфраструктуры и снимать показания с приборов — как электронных, так и стрелочных.

Такой проект для теплоэлектростанции реализовали в МАИ. В задачи промышленного беспилотника входят, в частности, дефектоскопия труб, связанных с топкой парового котла, а также определение показаний приборов машинного зала.

— Для машинного зрения распознавание показаний приборов сильно отличается от дефектоскопии труб. Главная сложность заключается в том, что дрон может с любой стороны подлететь к манометру, прибор может иметь разные ракурсы освещения, соответственно, получатся разные изображения. Поскольку реальных данных для обучения нейросети в нашем распоряжении было мало, мы сделали синтетический датасет, связанный с манометром. Мы изучили большой массив мировых научных публикаций и выяснили, что для стрелочных приборов, которые до сих пор используются повсеместно, не существует универсальной методики создания синтетических данных. Похожую задачу решали американские коллеги в Гарварде, но они смогли предложить решение только для неподвижной камеры, мы же сделали своё оригинальное решение для камеры БЛА в полёте, — рассказывает один из разработчиков, руководитель лаборатории искусственного интеллекта института № 8 «Компьютерные науки и прикладная математика» МАИ Вадим Кондаратцев.

Не менее сложной задачей было научить систему определять дефекты труб. Главная трудность здесь состояла в том, что дрон летает в полной темноте с зажжённым прожектором, а потому в зависимости от того, как ложится на трубу свет, меняется и изображение возможного дефекта. Таких сложных вариаций реальных изображений на практике получить невозможно, поэтому и здесь разработчики пошли по пути создания генератора синтетических данных.

— Технически это выглядит следующим образом. Разработчик берёт целевую модель обстановки — улицу, помещение, топку котла, трубу и т.д. — и под эту целевую модель заготавливает, во-первых, базовую сцену: в нашем случае, создаёт в специальной программе 3D-модель трубы. Потом придумывает алгоритм, как, имея базовую сцену, автоматически двигать камеру, строить разметку, наносить дефекты. Как ставить фильтры, которые будут искажать изображение таким образом, чтобы моделировать реальную съёмку. Как сделать так, чтобы данные, которые генерируются на основе этого движка, упаковывались и отправлялась в фреймворк обучения нейронной сети, — отмечает эксперт.

Разработка таких исходных 3D-моделей — довольно трудоёмкая работа, которая в среднем занимает несколько месяцев. Зато когда генератор готов, он способен за неделю создать несколько сотен тысяч изображений, которых вполне хватает для обучения нейросети.

— Конечно, обученный специалист распознаёт дефекты и считывает показания приборов в 100% случаев: для умной камеры это пока невозможный показатель. Но в данном случае выигрыш в скорости: дрон с умной камерой может облететь всю топку за пять минут, а человеку надо потратить несколько недель на строительство лесов и последующий осмотр, не говоря уже о рисках при проведении такого рода работ, — говорит Вадим Кондаратцев.

Материал подготовлен при поддержке Минобрнауки России.




Сообщения компаний:

Аэрофлот публикует финансовые результаты за 1 квартал 2025 года по РСБУ
ПАО "Аэрофлот"

Fast Track в аэропорту Домодедово стал доступнее
Московский аэропорт Домодедово

Эмирейтс стала первой в мире авиакомпанией, сертифицированной по программе Autism Certified Airline™
Авиакомпания Emirates

Накануне празднования 80-летия Победы в аэропорту Домодедово выступил оркестр Федеральной таможенной службы
Московский аэропорт Домодедово

Авиакомпания NordStar украсила свои самолёты к 9 мая
АО "АК "НордСтар"

В МАИ создали цифровую платформу для автоматического контроля и анализа состояния парка БЛА
Московский авиационный институт

«Яковлев» запустил линейную станцию технического обслуживания самолетов SSJ-100 в аэропорту Самары
ПАО "ОАК"

Обновленный Ил-96-400Т Sky Gates выполнил первый рейс из Москвы на Камчатку
АО "Ред Вингс"

Авиакомпания Turkmenistan Airlines возобновляет рейсы в аэропорт Домодедово
Московский аэропорт Домодедово

Туроператор Fun&Sun запускает рейсы во Вьетнам из аэропорта Домодедово
Московский аэропорт Домодедово

Авиакомпания El Al возобновляет рейсы из аэропорта Домодедово
Московский аэропорт Домодедово

Российская государственная библиотека подарит пассажирам аэропорта «Гагарин» электронные книги о Великой Победе
АО УК "Аэропорты Регионов"

Российский – лучший: в МАИ рассказали об уникальности МС-21 с новейшими отечественными системами
Московский авиационный институт

Информация для пассажиров, вылетающих в период майских праздников
ПАО "Аэрофлот"

«Азимут» провел сертификационные испытания нового радиолокатора для аэропортов
Госкорпорация Ростех

В аэропорту Владивосток прошли санитарно-эпидемиологические учения
АО "Международный аэропорт Владивосток"

Ростех разработал новый комплекс РЭБ для защиты территорий от беспилотников
Госкорпорация Ростех

Торжественное открытие регулярного рейса Иркутск – Пекин от Air China
АО "Международный аэропорт Иркутск"

Аэровокзал «Южно-Сахалинск» провёл учения по ликвидации разливов нефти
АО «Аэровокзал Южно-Сахалинск»

В майские праздники из аэропорта Елизово будут выполняться авиаперелеты по 16 направлениям
АО УК "Аэропорты Регионов"